Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00——— Notice that the base salary is now displayed

Fig. 12.6 | Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (Part 5 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Virtual Functions and Virtual
Destructors (cont.)

virtual Destructors

« A problem can occur when using polymorphism to process
dynamically allocated objects of a class hierarchy.

 If a derived-class object with a non-virtual destructor is
destroyed by applying the delete operator to a base-class
pointer to the object, the C++ standard specifies that the
behavior is undefined.

» The simple solution to this problem is to create a pub11c
virtual destructor in the base class.

» If a base class destructor is declared virtual, the
destructors of any derived classes are a/sovirtual and
they override the base class destructor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

For example, in class CommissionEmployee’s
definition, we can define the virtual destructor as
follows:

virtual ~CommissionEmployee() { }

Now, If an object in the hierarchy is destroyed explicitly by
applying the de lete operator to a base-class pointer, the
destructor for the aopropriate class is called based on the
object to which the base-class pointer points.

Remember, when a derived-class object is destroyed, the
base-class part of the derived-class object is also destroyed,
so 1t’s important for the destructors of both the derived and
base classes to execute.

The base-class destructor automatically executes after the
derived-class destructor.

Error-Prevention Tip 12.2

If a class has virtual functions, always provide a
virtual destructor, even if one is not required for the
class. This ensures that a custom derived-class
destructor (if there is one) will be invoked when a
derived-class object is deleted via a base class pointer.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 12.1

Constructors cannot be virtual. Declaring a
constructor virtual is a compilation error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Virtual Functions and Virtual
Destructors (cont.)

C++11: Final Member Functions and Classes

* |n C++11, a base-class virtual function that’s declared final in its

prototype, as in
virtual someFunction(parameters) final;

« cannotbe overridden in any derived class—this guarantees that
the base class’s T1nal member function definition will be used
by all base-class objects and by all objects of the base class’s
direct and indirect derived classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Virtual Functions and Virtual
Destructors (cont.)

« As of C++11, you can declare a class as final to prevent it from
being used as a base class, as In

class MyClass final // this class cannot be a base class
{

// class body
}.

« Attempting to override a f1nal member function or inherit from
a T1nal base class results in a compilation error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.4 Type Fields and sw1tch Statements

One way to determine the type of an object is to use a switch
statement to check the value of a field in the object.

This allows us to distinguish among object types, then invoke an
appropriate action for a particular object.

Using sw1tch logic exposes programs to a variety of potential
problems.

— For example, you might forget to include a type test when one is
warranted, or might forget to test all possible cases in a switch
statement.

— When modifying a sw1 tch-based system by adding new types, you
might forget to insert the new cases in a//relevant swi tch statements.

— Every addition or deletion of a class requires the modification of every
sw1 tch statement in the system; tracking these statements down can
be time consuming and error prone.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 12.7

Polymorphic programming can eliminate the need for
switch logic. By using the polymorphism mechanism
to perform the equivalent logic, you can avoid the kinds
of errors typically associated with switch logic.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 12.8

An interesting consequence of using polymorphism is
that programs take on a simplified appearance. They
contain less branching logic and simpler sequential
code.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual
Functions

There are cases in which it’s useful to define c/asses from which
you never intend to instantiate any objects.

Such classes are called abstract classes.

Because these classes normally are used as base classes in
Inheritance hierarchies, we refer to them as abstract base classes.

These classes cannot be used to instantiate objects, because, as
we’ll soon see, abstract classes are /7complete—derived classes
must define the “missing pieces.”

An abstract class 1s a base class from which other classes can
Inherit.

Classes that can be used to instantiate objects are called concrete
classes.

Such classes define every member function they declare.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual
Functions (cont.)

Abstract base classes are foo generic to define real objects; we need
to be more specific before we can think of instantiating objects.

For example, if someone tells you to “draw the two-dimensional
shape,” what shape would you draw?

Concrete classes provide the specifics that make it possible to
Instantiate objects.

An inheritance hierarchy does not need to contain any abstract
classes, but many object-oriented systems have class hierarchies
headed by abstract base classes.

In some cases, abstract classes constitute the top few levels of the
hierarchy.

A good example of this is the shape hierarchy in Fig. 12.3, which
begins with abstract base class Shape.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual
Functions (cont.)

Pure Virtual Functions

« Aclass Is made abstract by declaring one or more of its
virtual functions to be “pure.” A pure virtual

function is specified by placing “= 0” in its declaration, as
In

virtual void draw() const = 0; // pure virtual
function

e The “= 0 is a pure specifier.
« Pure virtual functions typically do notprovide
Implementations, though they can.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual
Functions (cont.)

Each concrete derived class must override all base-class pure
virtual functions with concrete implementations of those
functions; otherwise the derived class is also abstract.

The difference between a virtual function and a pure
virtual function is that a virtual function Aasan
Implementation and gives the derived class the option of
overriding the function.

By contrast, a pure virtual function does nothave an
Implementation and requires the derived class to override the
function for that derived class to be concrete; otherwise the
derived class remains abstract.

Pure virtual functions are used when it does 770t make sense
for the base class to have an implementation of a function, but
you want all concrete derived classes to implement the function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 12.9

An abstract class defines a common public interface for
the various classes in a class hierarchy. An abstract class
contains one or more pure virtual functions that
concrete derived classes must override.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

