
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.4 Virtual Functions and Virtual

Destructors (cont.)

virtual Destructors

• A problem can occur when using polymorphism to process
dynamically allocated objects of a class hierarchy.

• If a derived-class object with a non-virtual destructor is
destroyed by applying the delete operator to a base-class
pointer to the object, the C++ standard specifies that the
behavior is undefined.

• The simple solution to this problem is to create a public
virtual destructor in the base class.

• If a base class destructor is declared virtual, the
destructors of any derived classes are also virtual and
they override the base class destructor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.4 Virtual Functions and Virtual

Destructors (cont.)

• For example, in class CommissionEmployee’s
definition, we can define the virtual destructor as
follows:
virtual ~CommissionEmployee() { }

• Now, if an object in the hierarchy is destroyed explicitly by
applying the delete operator to a base-class pointer, the
destructor for the appropriate class is called based on the
object to which the base-class pointer points.

• Remember, when a derived-class object is destroyed, the
base-class part of the derived-class object is also destroyed,
so it’s important for the destructors of both the derived and
base classes to execute.

• The base-class destructor automatically executes after the
derived-class destructor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.4 Virtual Functions and Virtual

Destructors (cont.)

C++11: final Member Functions and Classes

• In C++11, a base-class virtual function that’s declared final in its
prototype, as in
virtual someFunction(parameters) final;

• cannot be overridden in any derived class—this guarantees that
the base class’s final member function definition will be used
by all base-class objects and by all objects of the base class’s
direct and indirect derived classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.4 Virtual Functions and Virtual

Destructors (cont.)

• As of C++11, you can declare a class as final to prevent it from
being used as a base class, as in
class MyClass final // this class cannot be a base class
{
 // class body
};

• Attempting to override a final member function or inherit from
a final base class results in a compilation error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.4 Type Fields and switch Statements

• One way to determine the type of an object is to use a switch
statement to check the value of a field in the object.

• This allows us to distinguish among object types, then invoke an
appropriate action for a particular object.

• Using switch logic exposes programs to a variety of potential
problems.

– For example, you might forget to include a type test when one is
warranted, or might forget to test all possible cases in a switch
statement.

– When modifying a switch-based system by adding new types, you
might forget to insert the new cases in all relevant switch statements.

– Every addition or deletion of a class requires the modification of every
switch statement in the system; tracking these statements down can
be time consuming and error prone.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual

Functions

• There are cases in which it’s useful to define classes from which
you never intend to instantiate any objects.

• Such classes are called abstract classes.

• Because these classes normally are used as base classes in
inheritance hierarchies, we refer to them as abstract base classes.

• These classes cannot be used to instantiate objects, because, as
we’ll soon see, abstract classes are incomplete—derived classes
must define the “missing pieces.”

• An abstract class is a base class from which other classes can
inherit.

• Classes that can be used to instantiate objects are called concrete
classes.

• Such classes define every member function they declare.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual

Functions (cont.)

• Abstract base classes are too generic to define real objects; we need
to be more specific before we can think of instantiating objects.

• For example, if someone tells you to “draw the two-dimensional
shape,” what shape would you draw?

• Concrete classes provide the specifics that make it possible to
instantiate objects.

• An inheritance hierarchy does not need to contain any abstract
classes, but many object-oriented systems have class hierarchies
headed by abstract base classes.

• In some cases, abstract classes constitute the top few levels of the
hierarchy.

• A good example of this is the shape hierarchy in Fig. 12.3, which
begins with abstract base class Shape.

©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

12.5 Abstract Classes and Pure virtual

Functions (cont.)

Pure Virtual Functions

• A class is made abstract by declaring one or more of its

virtual functions to be “pure.” A pure virtual

function is specified by placing “= 0” in its declaration, as

in

virtual void draw() const = 0; // pure virtual
function

• The “= 0” is a pure specifier.

• Pure virtual functions typically do not provide

implementations, though they can.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual

Functions (cont.)

• Each concrete derived class must override all base-class pure
virtual functions with concrete implementations of those
functions; otherwise the derived class is also abstract.

• The difference between a virtual function and a pure
virtual function is that a virtual function has an
implementation and gives the derived class the option of
overriding the function.

• By contrast, a pure virtual function does not have an
implementation and requires the derived class to override the
function for that derived class to be concrete; otherwise the
derived class remains abstract.

• Pure virtual functions are used when it does not make sense
for the base class to have an implementation of a function, but
you want all concrete derived classes to implement the function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

